Team Play Solutions'

Part i: We find by direct computation that
1° +6%+2% 4+ 3% = 14216 + 8 + 27 = 252.

Meanwhile, the quantities (a+b—c¢), (a+b—d), (c+d—a), (c+d—Db)

reduce to 5, 4, 4, and —1. So we next compute
5%+ 43 + 4% 4 (—1)° =125 + 64+ 64 — 1 = 252,
so the two sides agree. If we try a =1, b= 8, ¢ = 2, d = 4 we find that
1348428 44% =7+ 5% 4 5%+ (-2)% = 585.
Similarly, when a =1, b =10, ¢ = 2, d = 5 we have
12 +10° +2° + 5% = 9% + 6% + 6% + (-3)° = 1134.
Part ii: It makes sense to try 1000 as one of our perfect cubes, so it

remains to write 368 as a sum of three cubes. Some experimentation
yields 368 = 216 4+ 125 + 27. Therefore we have

1368 = 10% + 6% + 5% + 33.

But this corresponds to using a = 3, b = 10, ¢ = 5 and d = 6. Since

ab = cd our identity applies, yielding the second representation

1368 = 83 4+ 83 4+ 73 + 13,

Part iii: Based on the form of the identity involving cubes, we guess
that the terms c? and d? ought to appear somewhere, as well as the
terms (a+b—c)? and (a+b— d)%. In fact these are exactly the correct
terms to include on the right-hand side. Expanding the left side yields

2a% + 20 + 2¢% + 2d? + 4ed — 2ac — 2ad — 2be — 2bd.

The expansion of the right side is virtually identical, except that the 4cd
term is replaced by a 4ab term. However, since ab = cd we conclude

that the two sides are always equal.

Part iv: Expanding (a + b — ¢)? requires patience and care. The most
obvious approach is to find (a +b — ¢)? = a® + b% + ¢ + 2ab — 2ac — 2bc
and then multiply this result by (a + b — ¢) again. It is also possible to
expand (a +b—c)(a+b—c)(a+b—c) all at once. Regardless, the end
result for (a + b — ¢)3 looks like

a® + b — A + 3a%b + 3ab® — 3a%c + 3ac® — 3b%c + 3bc? — Gabe.

Adding together similar expressions for (a + b — d)?, (c 4+ d — a)® and
(c+d—b)3 we discover that a number of terms cancel. For instance, the
3ac? term will cancel with a —3ac? term in the expansion of (c¢+d —a)3.
This occurs for any cross term involving one of a or b and one of ¢ or d.
When the dust settles we are left with

a3 4 b3 4 C3 4 d3
+ 6a%b + 6ab® + 6¢2d + 6¢d? — 6abe — 6abd — 6acd — 6bed.

Finally, the latter eight terms cancel in pairs due to the fact that ab = cd.
For instance, we have 6a?b — 6acd = 6a(ab — cd) = 0. Hence the right-
hand side of (x) reduces to a® + b® + ¢ + d3, as desired.

Part v: Our strategy is to find a way to write 42 as a sum of four integer
cubes, then use (%) to obtain a second representation involving cubes of

fractions. It does not take long to discover that
42 = 3% 423 423 ¢ (—1)3.

Ifwenowleta+b—c=3,a+b—-d=2,c+d—a=2,c+d—b=-1
and solve for a, b, ¢ and d we obtain a = %, b= %, c= % and d = g
Fortunately ab = cd, so our identity applies, and we deduce the nice

numerical result
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Part vi: This result is motivated by the fact that all three of the num-

bers computed in the first part have lots of prime factors. For instance,

252 = 2.2.3.3.7,
585 = 3-3-5-13,
1134 = 2-3-3-3-3-7.

To explain why this happens we will algebraically factor the expression
a4+ b3 + ¢ + d3. Letting N = ab = cd, we begin by writing

Rk
a®+ b+ +dP = (a®+P) (1—}—() )

ac

While N3 is certainly divisible by both a® and ¢3 separately, it may
not be divisible by their product if a¢ and ¢ have common factors. This
difficulty can be remedied by letting t = GCD(a, ¢), then pulling out 3
from the first factor and distributing it through the second factor to get

a+ b+ +d = ((j)5+ (;)3> <t3 + (sz>3> .

We leave it to the reader to confirm that Nt/ac is an integer.

To complete the argument we must show that each of these sums of
distinct cubes has at least two prime divisors. But this follows because
m3 +n3 = (m + n)(m? — mn + n?). The first factor is clearly 2 or
greater, while the second is equal to (m — n)? + mn, which is also at
least 2. Therefore each factor above has at least two prime divisors,

yielding at least four prime divisors in all, as claimed.
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