
Answer Key 4. 18

1. 100 5. 7/4

2. 2314 6. 59

3. 8 7. 147

1. Working from the last set of parentheses back towards the first, we

see that all the numbers in the 18th and 19th sets of parentheses cancel

except for the number 19. The same occurs for the 16th and 17th terms,

leaving just 17. When the dust settles, we have

1 + 3 + 5 + · · ·+ 17 + 19 = 20 + 20 + 20 + 20 + 20 = 100.

2. Suppose that a > b. This means that a < c, since exactly one of

a > b or a > c is true. So far we have b < a < c, thus b < c. Condition

(ii) now implies b > d, giving d < b < a < c overall. But this violates

condition (iii), so our original assumption that a > b must be mistaken.

Starting with a < b instead and employing the same logic, we arrive at

c < a < b < d overall. Hence c = 1, a = 2, b = 3, d = 4 and our

four-digit number 1000a + 100b + 10c + d must be 2314.

3. Upon drawing a diagram we instinctively lean

towards configurations with as few intersections

among the segments as possible, since these cre-

ate more regions. It is actually possible to obtain

no intersections, as illustrated here, giving eight

regions. In fact, Euler’s formula ensures that every such diagram will

involve precise eight regions. Each of our six points is the endpoint of

four segments, for a total of 24 endpoints, hence there are 12 segments.

According to Euler, V − E + F = 2 for such configurations, where F

is the number “faces” (regions). In our case V = 6 and E = 12, so we

must have F = 8. Therefore 8 regions is the best possible.

4. Some experimentation reveals that for any positive integer n one

of 4 + n, 6 + n, 8 + n is composite. In retrospect, this makes sense

because exactly one of them will be a multiple of 3. (Because 8 + n is

a multiple of 3 exactly when 5 + n is.) Since 4, 6, 8 are the first three

composite numbers, f(n) will always be one of these three numbers. In

fact, f(2) = 4, f(3) = 6 and f(1) = 8, so all three values occur, meaning

that the desired sum is 4 + 6 + 8 = 18.

5. It is possible to bash this algebraically, but there is a more elegant

and illuminating geometric approach. Place the two isosceles triangles

next to one another as shown. We claim that they

must fit together to form a large right triangle.

To see why, split the isosceles triangles along the

dotted lines into two right triangles. Since all four

small right triangles have the same area, we can

rearrange the pieces of one isosceles triangle to form the other, which

explains the claim above. By the Pythagorean theorem, we now deduce

(
√

6)2 + ( 5
2 )2 = (2x)2 =⇒ 6 +

25

4
=

49

4
= 4x2,

hence x2 = 49
16 , which gives x = 7

4 .

6. It is tempting to multiply out, but instead we employ the formula

1 + 2 + · · ·+ n = 1
2n(n + 1) to rewrite the expression as

1
2 (1)(2) · 12 (2)(3) · 12 (3)(4) · · · 12 (59)(60).

Combining corresponding terms, we discover that we are dealing with

two factorials divided by a large power of 2; namely

(59!)(60!)

259
=

2(59!)(60!)

260
,

where we have included the extra 2 to capitalize on the fact that 260 ≡ 1

mod 61 by Fermat’s Little Theorem. Moreover, by Wilson’s Theorem

60! ≡ −1 and 59! ≡ 1 mod 61, hence our entire expression reduces to

just −2 ≡ 59 mod 61. Therefore the desired remainder is 59.



7. Connect the center of each heptagon

in ring 2 or higher to the center of the

adjacent heptagon in the previous ring.

If there are two options, choose the one

furthest around counterclockwise. This

forms seven trees, one of which is shown

in the diagram. Note that there are two

types of nodes: 2-branch nodes, which

correspond to heptagons that touch two

tiles in the previous ring, and 3-branch nodes, which correspond to tiles

with only one neighbor in the previous ring. Also note that the rightmost

branch of any node leads to a 2-branch node, while the others lead to

3-branch nodes. This means that if a layer of a tree has a 3-branch and b

2-branch nodes, the next layer has (2a+b) 3-branch and (a+b) 2-branch

nodes. By iterating this recurrence (or by inspecting the diagram), we

find that the third and fourth layer of each tree has 8 and 21 tiles. Since

there are 7 trees, the fourth ring has 7(21) = 147 tiles.

N.B. The alert reader may have noticed that Fibonacci numbers

make an appearance. This pattern persists, so the general formula for

the number of heptagons in the nth ring is 7F2n.
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