
Team Play Solutions

Part i: We compute the quotients and discover that in each case the

quantity a2 + b2 + c2 is exactly twice abc + 1.

12 + 12 + 22

1 · 1 · 2 + 1
=

6

3
= 2,

12 + 22 + 32

1 · 2 · 3 + 1
=

14

7
= 2,

12 + 32 + 42

1 · 3 · 4 + 1
=

26

13
= 2,

12 + 42 + 52

1 · 4 · 5 + 1
=

42

21
= 2.

Since q = 2 = 12 + 12, the q-values are indeed the sum of two squares.

Part ii: The previous part suggests that (1, t, t+1) is an excellent triple

for any positive integer t. We can confirm this by computing

12 + t2 + (t + 1)2

(1)(t)(t + 1) + 1
=

2t2 + 2t + 2

t2 + t + 1
= 2.

As expected, the quotient is a positive integer, showing that (1, t, t + 1)

is an excellent triple.

Part iii: It seems that triples of the form (2, t, g(t)) are excellent, for a

certain function g(t). To find a formula for g(t) we use finite differences.

t = 1 2 3 4 5

10 32 78 160 290
22 46 82 130

24 36 48
12 12

Extending the pattern back one term in each row gives values of 0, 10,

12, 12 along the diagonal beneath t = 0, leading to the formula

g(t) = 0

(
t

0

)
+ 10

(
t

1

)
+ 12

(
t

2

)
+ 12

(
t

3

)
= 10t + 12 · t(t− 1)

2
+ 12 · t(t− 1)(t− 2)

6

= 10t + 6t2 − 6t + 2t3 − 6t2 + 4t

= 2t3 + 8t.

We can confirm that triples of the form (2, t, 2t3+8t) are in fact excellent

by simplifying

22 + t2 + (2t3 + 8t)2

2t(2t3 + 8t) + 1
=

4t6 + 32t4 + 65t2 + 4

4t4 + 16t2 + 1
= t2 + 4.

Notice that the q-value is t2 + 22, which is a sum of two squares.

Part iv: By working with q we can actually avoid messy algebra. We

are given that q = a2+b2+c2

abc+1 , thus a2 + b2 + c2 = qabc+q. Hence we have

a2 + b2 + (qab− c)2 = a2 + b2 + c2 − 2qabc + q2a2b2

= qabc + q − 2qabc + q2a2b2

= q(qa2b2 − abc + 1).

Notice that this expression is exactly q times ab(qab − c) + 1. Hence

the former expression is divisible by the latter, as desired. Even more

importantly, their quotient is q. In other words, the q-value for the triple

(a, b, qab − c) is the same as the q-value for (a, b, c). This will play an

important role shortly.

Part v: Consider the function a2+b2+x2

abx+1 , for fixed positive integers a, b.

Clearly plugging in x ≥ 0 will yield a positive value, while x ≤ −1 gives

a negative value. (Or an undefined expression, in one instance.) But we

have just seen in the previous part that substituting x = qab− c in this

expression yields q, a positive value, so we deduce that qab− c ≥ 0.

Recall that we have an excellent triple (a, b, c) with quotient q. For

this value of q the equation

a2 + b2 + x2

abx + 1
= q,

leads to a quadratic in x, which has two solutions; namely, x = c and

x = qab − c. If we can show that the smaller root of this quadratic

is less than b then we will be done, since we are assuming that c ≥ b.

According to the quadratic formula the actual root is

1
2

(
qab−

√
q2a2b2 − 4a2 − 4b2 + 4q

)
.



One then checks that the following inequalities are equivalent:

1
2

(
qab−

√
q2a2b2 − 4a2 − 4b2 + 4q

)
< b,

qab− 2b <
√
q2a2b2 − 4a2 − 4b2 + 4q,

q2a2b2 − 4ab2q + 4b2 < q2a2b2 − 4a2 − 4b2 + 4q,

a2 − q < b2(aq − 2).

Now if a = 1 the last line is clearly true, as q ≥ 2. And if a > 1 then

the left-hand side is less than a2, while the right-hand side is at least b2.

Since a ≤ b we conclude that the final inequality is true either way, hence

so is the initial one, and we’re done.

Part vi: The groundwork has now been laid for a beautiful finish to the

problem. Suppose we have an excellent triple of numbers with q ≥ 2,

and list them in increasing order as (a, b, c). Now compute qab− c. We

have shown that this quantity is either positive or 0. If it is positive,

then we have a new excellent triple (qab− c, a, b) with the same q-value,

but the sum of the elements has decreased. We can’t repeat this process

forever, so eventually we must encounter the other possibility, namely

that qab − c = 0, giving the triple (0, a, b). But note that the quotient

is still q, which means that

02 + a2 + b2

(0)(a)(b) + 1
= q =⇒ q = a2 + b2.

Therefore the original quotient can be written as q = a2+b2, as claimed.

N.B. Of course we still must handle the case q = 1 from part v.

Trouble only arises if a = 1 or a = 2. We leave it to the reader to check

that there are no values of b and c for which a2+b2+c2

abc+1 = 1 in these cases,

so the argument in part vi actually always works, and you’re done.

By the way, this result generalizes problem six from the 1988 IMO,

one of the most legendary (and difficult) IMO problems ever posed. So

congratulations if you made significant progress on this Team Play!
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