
Team Play Solutions

Part i: The equation for the case n = 3 is
1

1−x+ 1
2−x+ 1

3−x = 0. The graph will have

asymptotes at x = 1, x = 2, x = 3, and

the x-axis, as shown at right. (The y-axis

is not drawn.) Apparently the solutions

a1 and a2 are located within the intervals

1 < a1 < 2 and 2 < a2 < 3.

To solve we multiply through by (1 − x)(2 − x)(3 − x) to obtain

(6 − 5x + x2) + (3 − 4x + x2) + (2 − 3x + x2) = 0.

This simplifies to 3x2 − 12x + 11 = 0, which has solutions a1 = 2 −
√
3
3

and a2 = 2 +
√
3
3 , using the quadratic formula.

Part ii: Subtracting 1 from each term on the left-hand side, and thus

subtracting n from the right-hand side, gives

1

1 − x
− 1 +

2

2 − x
− 1 + · · · +

n

n− x
− 1 = n− n,

which simplifies to

x

1 − x
+

x

2 − x
+ · · · +

x

n− x
= 0.

Factoring out an x reveals that the given equation has the same solutions

as equation (∗), along with the solution x = 0 as well.

Part iii: We first observe that in general the graph of the left-hand

side of equation (∗) will resemble the one shown above, except that

there will be n vertical asymptotes at x = 1, x = 2, . . . , x = n. This

explains why there are precisely n− 1 solutions, and further shows that

1 < a1 < 2 < a2 < 3 < · · · < n−1 < an−1 < n. We next show that if ak

is a solution, then (n + 1) − ak is also a solution. Indeed, substituting

x = (n + 1) − ak into the left-hand side of equation (∗) yields

1

1 − (n + 1 − ak)
+

1

2 − (n + 1 − ak)
+ · · · +

1

n− (n + 1 − ak)
,

which may be rewritten as

1

ak − n
+ · · · +

1

ak − 2
+

1

ak − 1
.

Since ak is a solution of (∗) this expression equals 0, hence (n+1)−ak is

also a solution. But k < ak < k+ 1, so n− k < (n+ 1)− ak < n− k+ 1.

Hence this solution must be an−k. In other words, (n+ 1)− ak = an−k,

or ak + an−k = n + 1, as claimed. Adding together these equalities for

all values of k from 1 to n− 1, we discover that

2(a1 + a2 + · · · + an−1) = (n + 1)(n− 1),

meaning that the sum of the solutions is 1
2 (n2 − 1).

Part iv: Let ak be any solution other than the largest. We wish to

show that ak+1 − ak > 1. Since the graph of the left-hand side of (∗)

is always increasing, it suffices to show that plugging in ak + 1 gives a

negative value, meaning that we have not yet reached the zero in the

next interval. We find that

1

1 − (ak + 1)
+

1

2 − (ak + 1)
+ · · · +

1

n− (ak + 1)

= − 1

ak
+

1

1 − ak
+ · · · +

1

(n− 1) − ak

= − 1

ak
− 1

n− ak
< 0,

where we used the fact that ak is a solution to (∗) in the last step.

Part v: For the sake of conserving space we outline the computation.

To begin, multiply through by (1−x)(2−x) · · · (n−x) in (∗) and negate

if necessary to see that a1, a2, . . . , an−1 are the n− 1 roots of

[(x−2) · · · (x−n)] +[(x−1)(x−3) · · · (x−n)] + · · · + [(x−1) · · · (x−(n−1))].

Let C be the coefficient of the linear term and let D be the constant term.

Using Vieta’s formulas, one may confirm that the sum of the reciprocals

of the roots is equal to −C
D . The constant term can be written neatly

in the form

D = n!(−1)n−1
(

1

1
+

1

2
+ · · · +

1

n

)
= n!(−1)n−1A.



The linear term is more complicated,

C =
n!

1
(−1)n−2

(
1

2
+ · · · +

1

n

)
+ · · · +

n!

n
(−1)n−2

(
1

1
+ · · · +

1

n− 1

)
.

Every fraction of the form 1
jk with 1 ≤ j < k ≤ n appears twice in the

above sum, which means that we can rewrite C as

C = n!(−1)n−2

[(
1

1
+ · · · +

1

n

)2

−
(

1

12
+ · · · +

1

n2

)]
,

or C = n!(−1)n−2(A2 −B). Finally, simplifying −C
D gives A− B

A .

Part vi: We have already seen that 1 < a1. To prove that a1 < 1 + 1
A

it suffices to show that substituting x = 1 + 1
A into the left-hand side

of (∗) gives a positive value, since that function is increasing for all x.

Since 1 + 1
A < 2, this is equivalent to showing that

1

(1 + 1
A ) − 1

<
1

2 − (1 + 1
A )

+
1

3 − (1 + 1
A )

+ · · · +
1

n− (1 + 1
A )

.

The left-hand side reduces to just A, which is 1 + 1
2 + · · ·+ 1

n . Therefore

the above inequality is equivalent to

1 +
1

2
+ · · · +

1

n
<

1

1 − 1
A

+
1

2 − 1
A

+ · · · +
1

(n− 1) − 1
A

.

Subtracting every term but 1
n over to the right-hand side and combining

corresponding pairs of fractions yields

1

n
<

1

A− 1
+

1

2(2A− 1)
+ · · · +

1

(n− 1)((n− 1)A− 1)
.

However, it is clear that A−1 < n, which means that 1
n < 1

A−1 . Adding

more positive terms to the right-hand side only makes the inequality

more pronounced. Hence the latter inequality is true, and you’re done.

The interested reader may wish to prove that a21 + · · · + a2n−1 is

given by 1
12 (n2 − 1)(4n + 1). For a real challenge, try showing that

a2 − a1 > a3 − a2 when n ≥ 5.
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