
Team Play Solutions

Part i: The table appears below, oriented horizontally to save space.

n 0 1 2 3 4 5 6 7 8 9 10 11
binary 0 1 10 11 100 101 110 111 1000 1001 1010 1011
b(n) 0 1 1 2 1 2 2 3 1 2 2 3

12 13 14 15 16 17 18 19 20 21
1100 1101 1110 1111 10000 10001 10010 10011 10100 10101

2 3 3 4 1 2 2 3 2 3

22 23 24 25 26 27 28 29 30 31
10110 10111 11000 11001 11010 11011 11100 11101 11110 11111

3 4 2 3 3 4 3 4 4 5

Carefully adding together the entries along the bottom row reveals that

b(0) + b(1) + b(2) + · · · + b(31) = 80.

Part ii: Observe that the binary representations for k and 31 − k are

“complements” of one another, in the sense that changing the 0’s to 1’s

and vice-versa in one binary number gives the other. This is the case

because 31 = 111112, so subtracting 31 − k in binary has the effect of

replacing each 0 in the binary representation of k by a 1 and each 1 by

a 0. (In the same way, subtracting 99999 − 45545 gives 54454 in base

ten; the 4’s become 5’s and vice versa.) So between them k and 31 − k

have a total of five 1’s in binary, hence b(k) + b(31 − k) = 5.

In the same way k and (2r − 1) − k for k = 0, 1, . . . , 2r − 1 are

“binary complements,” since 2r − 1 = 11 · · · 12 with r 1’s in its binary

representation. Therefore we can group these 2r numbers into 2r−1 pairs,

with b(k) + b(2r − 1 − k) = r for each pair, giving an overall total of

b(0) + b(1) + b(2) + · · · + b(2r − 1) = r2r−1.

Note that this formula agrees with the previous part when r = 5.

Part iii: We first realize that since m+n < 2011, each of m, n and m+n

has at most 11 digits in binary. Imagine performing the sum m + n in

binary; a sample computation is shown at right as an illustration. To

the immediate right of each column which does not involve carrying a 1,

1 1 1 1 1 1 1 1

1 0 1 0 1 0 1 1 0 1
+ 1 1 0 1 0 0 1 1 1

1 0 0 0 1 0 1 0 1 0 0

we draw vertical bars, which split the sum into

various blocks. Now observe that the rightmost

column of each block reads 1–1–0 (vertically,

of course), the leftmost block reads 0–0–1, and

each middle column is either 1–0–0, 0–1–0 or

1–1–1. This is due to the way in which binary addition in performed.

We now compare the number of 1’s in the top two rows with those

in the bottom row. Within any block each middle row has one more 1

above than below the line. The same is also true of the right and left

columns combined. Therefore a block of c columns has c − 1 more 1’s

above than below the line. This means that a binary addition with 11

columns will have at most 10 more 1’s above the line than below, proving

that b(m) + b(n)− b(m+ n) < 11. Incidentally, it is possible to actually

achieve a difference of 10, for instance with m = 1 and n = 1023.

Part iv: We prove the claim by induction. To begin, v(1) = 0 while

1 − b(1) = 1 − 1 = 0, so the two quantities agree for n = 1. In addition,

v(1) + v(2) = 0 + 1 = 1 and 2 − b(2) = 2 − 1 = 1, so the equality holds

for n = 2 as well. Now suppose the statement is true for n = k. We

wish to show that this implies that the statement is true for n = k + 1.

So we are given that

v(1) + v(2) + · · · + v(k) = k − b(k).

Adding v(k + 1) to both sides of the first statement gives

v(1) + v(2) + · · · + v(k) + v(k + 1) = k − b(k) + v(k + 1),

so once we show that k− b(k) + v(k + 1) = k + 1− b(k + 1) we are done.

This equality simplifies to just b(k) − b(k + 1) = v(k + 1) − 1. Suppose

that k and k + 1 are written in binary as

k = 1 · · · 0 11 · · · 1︸ ︷︷ ︸
n 1′s

, k + 1 = 1 · · · 1 00 · · · 0︸ ︷︷ ︸
n 0′s

,

for some n ≥ 0. Then b(k)− b(k+ 1) = n−1, while v(k+ 1) = n. Hence

it is true that b(k) − b(k + 1) = v(k + 1) − 1, and you’re done.



Part v: There are at least two ways to generalize b(n) for base three:

either let b3(n) count the number of nonzero digits in the base three

representation for n, or else let b3(n) be the sum of those digits. It turns

out that the latter more readily provides a base three analogue to the

previous part. Some experimentation leads to the formula

v3(1) + v3(2) + · · · + v3(n) = 1
2 (n− b3(n)),

where v3(n) counts the number of factors of 3 in the prime factorization

of n. For instance, when n = 11 we have

v3(1) + · · · + v3(12) = 0 + 0 + 1 + 0 + 0 + 1 + 0 + 0 + 2 + 0 + 0 = 4.

Meanwhile 11 = 1023 so b3(11) = 3. As predicted, 1
2 (11 − 3) = 4. This

statement can be proved similarly to the previous part.

Part vi: We opt for a combinatorial argument. The lefthand side of the

given identity counts how many pairs of 1’s there are in the numbers

from 00 · · · 02 up to 11 · · · 12, the 2r numbers that can be created with

r binary digits. An alternate way to count this same quantity is to

focus our attention on two digits (such as the last two) and figure out

how many binary numbers include a pair of 1’s in these positions. The

answer is 2r−2, since each of the remaining r − 2 digits could be either

a 0 or 1. Hence this particular pair of 1’s is counted 2r−2 times in the

sum. The same is true of all
(
r
2

)
pairs of digits, giving the desired result.

Multiplying this identity by 2 and adding the identity discovered in

part ii now reveals that

b(0)2 + b(1)2 + b(2)2 + · · · + b(2r − 1)2 = 2

(
r

2

)
2r−2 + r2r−1

= (r2 − r)2r−2 + 2r2r−2

= (r2 + r)2r−2.
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