
Answer Key 4. 7/4

1. 2314 5. 59

2. 8 6. 2380

3. 18 7. 1011 + 91i

1. Suppose that a > b. This means that a < c, since exactly one of

a > b or a > c is true. So far we have b < a < c, thus b < c. Condition

(ii) now implies b > d, giving d < b < a < c overall. But this violates

condition (iii), so our original assumption that a > b must be mistaken.

Starting with a < b instead and employing the same logic, we arrive at

c < a < b < d overall. Hence c = 1, a = 2, b = 3, d = 4 and our

four-digit number 1000a + 100b + 10c + d must be 2314.

2. Upon drawing a diagram we instinctively lean

towards configurations with as few intersections

among the segments as possible, since these cre-

ate more regions. It is actually possible to obtain

no intersections, as illustrated here, giving eight

regions. In fact, Euler’s formula ensures that every such diagram will

involve precise eight regions. Each of our six points is the endpoint of

four segments, for a total of 24 endpoints, hence there are 12 segments.

According to Euler, V − E + F = 2 for such configurations, where F

is the number “faces” (regions). In our case V = 6 and E = 12, so we

must have F = 8. Therefore 8 regions is the best possible.

3. Some experimentation reveals that for any positive integer n one

of 4 + n, 6 + n, 8 + n is composite. In retrospect, this makes sense

because exactly one of them will be a multiple of 3. (Because 8 + n is

a multiple of 3 exactly when 5 + n is.) Since 4, 6, 8 are the first three

composite numbers, f(n) will always be one of these three numbers. In

fact, f(2) = 4, f(3) = 6 and f(1) = 8, so all three values occur, meaning

that the desired sum is 4 + 6 + 8 = 18.

4. It is possible to bash this algebraically, but there is a more elegant

and illuminating geometric approach. Place the two isosceles triangles

next to one another as shown. We claim that they

must fit together to form a large right triangle.

To see why, split the isosceles triangles along the

dotted lines into two right triangles. Since all four

small right triangles have the same area, we can

rearrange the pieces of one isosceles triangle to form the other, which

explains the claim above. By the Pythagorean theorem, we now deduce

(
√

6)2 + ( 5
2 )2 = (2x)2 =⇒ 6 +

25

4
=

49

4
= 4x2,

hence x2 = 49
16 , which gives x = 7

4 .

5. It is tempting to multiply out, but instead we employ the formula

1 + 2 + · · ·+ n = 1
2n(n + 1) to rewrite the expression as

1
2 (1)(2) · 12 (2)(3) · 12 (3)(4) · · · 12 (59)(60).

Combining corresponding terms, we discover that we are dealing with

two factorials divided by a large power of 2; namely

(59!)(60!)

259
=

2(59!)(60!)

260
,

where we have included the extra 2 to capitalize on the fact that 260 ≡ 1

mod 61 by Fermat’s Little Theorem. Moreover, by Wilson’s Theorem

60! ≡ −1 and 59! ≡ 1 mod 61, hence our entire expression reduces to

just −2 ≡ 59 mod 61. Therefore the desired remainder is 59.

6. It is well-known that the number of paths from the bottom left to

top right corner of the grid is
(
8
4

)
= 70, since we must choose four of the

eight unit segments making up the path to be vertical, with the other

four being horizontal. However, this is not the final answer, since as

Fran moves the chip along a particular path she can advance it either

one or two units at a turn. In other words, there are multiple ways to

trace out a particular path using the allowable moves.



Looking carefully, we see that at any point she always has precisely

these two options—to advance the chip one or two units along the path.

Hence for any given path we must count the number of ways to move

eight units forward if at each turn we may advance either one or two

units. This is also a well-known problem; the reader may confirm that

there are Fn+1 ways to advance n units in this manner. Therefore in

total there are 70F9 = 70(34) = 2380 ways for Fran to move the chip

from the bottom left to the top right corner.

7. Although not immediately recognizable, the numbers in the denomi-

nator are all of the form n2 + 1, for n ranging from n = 11 to n = 100.

Complex numbers are present, so we opt to factor this expression as

(n + i)(n− i). The factors in the numerator are even less recognizable,

but the last term tips us off to the fact that these terms have the form

(n2 + n + 1 + i), from n = 10 to n = 100. (In particular, note there is

one more factor in the numerator!) One might hope that these terms

also factor; happily we discover that

(n2 + n + 1 + i) = (n + i)(n + 1− i).

Therefore the entire expression can be rewritten as

(10 + i)(11− i)(11 + i)(12− i)(12 + i)(13− i) · · · (100 + i)(101− i)

(11 + i)(11− i)(12 + i)(12− i) · · · (100 + i)(100− i)
,

where the offset helps us to remember the extra factors in the numerator.

Cancelling everything in sight simplifies the expression down to just

(10 + i)(101− i) = 1011 + 91i.
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