
Round One

The first section of the Round One Mandelbrot Team Play is reproduced below. A list of topics
and practice problems are also provided to aid in preparation. Note that these problems are not
meant to serve as a precise indicator of the problems that will appear on the contest. However,
students who understand how to solve them should be able to make significantly more progress
than they might have otherwise. So work hard on the problems, and good luck on the Team Play!'
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Facts: given a sequence a0, a1, a2, a3, a4, . . . , of numbers one can use finite differences to find
a polynomial formula for the sequence. Compute the differences b0 = a1 − a0, b1 = a2 − a1,
b2 = a3 − a2, and so forth, writing these values in a row beneath the first. Next compute a
second row of differences c0 = b1− b0, c1 = b2− b1, c2 = b3− b2, . . . , and continue this process
until some row contains all 0’s. Then the desired formula is

an = a0 + b0n + c0

(
n

2

)
+ d0

(
n

3

)
+ · · · = a0 + b0n + c0

n(n− 1)

2 · 1
+ d0

n(n− 1)(n− 2)

3 · 2 · 1
+ · · · .

Note that if the sequence begins at a1 or later then one should extend the terms of the rows
backwards, working from bottom to top, to obtain the values of a0, b0, c0, d0, etc.

Topics: divisibility, polynomial long division, finite differences

Practice Problems

In this set of practice problems we will look for positive integers a and b for which
a3 + b3

ab + 1
is also

a positive integer. We will call such a pair (a, b) an excellent pair of numbers.

1. Show that the pair (1, b) is excellent for any positive integer b.

2. Prove that the only excellent pair with a = b is (1, 1).

3. Find several excellent pairs of numbers with 1 < a < b by hand. Make and prove a conjecture
based on your results.

4. Find a polynomial giving values of 1, 2, 9, 25, 53, 96 when we plug in x = 1, 2, 3, 4, 5, 6.

5. A computer search for excellent pairs turns up the following numbers:

(2, 4) (2, 10) (2, 31) (3, 9) (3, 17) (3, 30) (4, 11) (4, 16) (4, 26) (4, 29) (4, 68)

(5, 7) (5, 11) (5, 25) (5, 37) (6, 36) (6, 50) (7, 49) (7, 65) (8, 64) (8, 82).

Find at least two infinite families of excellent pairs of numbers, then prove your assertions.

Hints and answers on the next page. =⇒



Hints and Answers

1. When a = 1 the expression reduces to
b3 + 1

b + 1
= b2 − b + 1, which is always a positive integer.

2. When a = b the given expression may be rewritten as
2a3

a2 + 1
= 2a− 2a

a2 + 1
. But it is easy to

show that a2 + 1 > 2a whenever a > 1 (for instance, note that (a − 1)2 > 0 when a > 1), so the

resulting expression will never be an integer.

3. A bit of trial and error reveals that the pairs (2, 3) and (3, 4) are both excellent, since 35
7

= 5
and 91

13
= 7. The leads us to conjecture that taking b = a + 1 always gives an excellent pair. We

can prove this by computing

a3 + (a + 1)3

a(a + 1) + 1
=

2a3 + 3a2 + 3a + 1

a2 + a + 1
=

(2a + 1)(a2 + a + 1)

a2 + a + 1
= 2a + 1,

which is clearly a positive integer.

4. Using finite differences leads to the following rows of numbers.

x = 1 2 3 4 5 6

1 2 9 25 53 96
1 7 16 28 43

6 9 12 15
3 3 3

All subsequent rows will contain 0’s. Extending the differences back one term in each row gives
values of 3, −2, 3, 3 along the diagonal beneath x = 0, leading to the formula

3− 2x + 3
x(x− 1)

2
+ 3

x(x− 1)(x− 2)

6
=

x3

2
− 5x

2
+ 3.

5. One quickly suspects that taking b = a2 gives an excellent pair. This is easily confirmed, since
(a3 + (a2)3)/(a(a2) + 1) = (a6 + a3)/(a3 + 1) = a3.

Much less obviously, the pairs (2, 10), (3, 17), (4, 26), (5, 37), (6, 50), (7, 65), and (8, 82) are also
part of an infinite family. Applying the method of finite differences to the values of b leads us to
discover the formula b = a2 + 2a + 2. (Or one could notice that each b-value is one more than a
perfect square.) We now need to perform long division on the expression

a3 + (a2 + 2a + 2)3

a(a2 + 2a + 2) + 1
=

a6 + 6a5 + 18a4 + 33a3 + 36a2 + 24a + 8

a3 + 2a2 + 2a + 1
.

The quotient comes out to exactly a3 + 4a2 + 8a + 8 with no remainder, so we’re done.


