
Team Play Solutions

Part i: We organize our list of partitions of {1, 2, 3, 4} according to the
size of the subsets involved. For instance, there are four partitions of
the form {a, b, c}{d}, so these are grouped together.

{1, 2, 3, 4} {1}{2}{3}{4} {1, 2, 3}{4}
{1, 2, 4}{3} {1, 3, 4}{2} {2, 3, 4}{1}
{1, 2}{3, 4} {1, 3}{2, 4} {1, 4}{2, 3}
{1, 2}{3}{4} {1, 3}{2}{4} {1, 4}{2}{3}
{2, 3}{1}{4} {2, 4}{1}{3} {3, 4}{1}{2}

There are fifteen partitions in the list, so B4 = 15.

Part ii: A careful inspection reveals that the seven partitions

{1, 2, 3, 4} {1, 3, 4}{2} {2, 3, 4}{1} {1, 2}{3, 4} {3, 4}{1}{2}

{1}{2}{3}{4} {1, 2}{3}{4}

remain unchanged when the 3 and 4 reverse places. In the first five cases
the 3 and 4 appear in the same subset, while in the other two cases the
3 and 4 are singletons. The analogous partitions of {1, 2, 3, 4, 5} are

{1, 2, 3, 4, 5} {1}{2}{3}{4, 5} {1, 2, 3}{4, 5}
{1, 2, 4, 5}{3} {1, 3, 4, 5}{2} {2, 3, 4, 5}{1}
{1, 2}{3, 4, 5} {1, 3}{2, 4, 5} {1, 4, 5}{2, 3}
{1, 2}{3}{4, 5} {1, 3}{2}{4, 5} {1, 4, 5}{2}{3}
{2, 3}{1}{4, 5} {2, 4, 5}{1}{3} {3, 4, 5}{1}{2}

{1, 2, 3}{4}{5} {1, 2}{3}{4}{5} {1, 3}{2}{4}{5}
{2, 3}{1}{4}{5} {1}{2}{3}{4}{5}

These are obtained by taking each partition from part i. and replacing
the ‘4’ by ‘4,5’ to ensure that the 4 and 5 are in the same subset. We also
included all partitions of {1, 2, 3} with the singletons {4}{5} appended.

Part iii: If {n+1} and {n+2}must appear as singletons in our partition
of {1, 2, 3, . . . , n + 2} then the numbers from 1 to n will be grouped
separately into various subsets. In other words, if we were to remove the
singletons we would be left with all the partitions of {1, 2, 3, . . . , n}. By
definition there are Bn of these; appending {n + 1} and {n + 2} yields
all the desired partitions of {1, 2, 3, . . . , n + 2}.

Now imagine that we have listed all partitions of {1, 2, 3, . . . , n + 2}
in which n + 1 and n + 2 appear in the same subset. If we replace each
occurrence of ‘n + 1, n + 2’ with just ‘n + 1’ then we will obtain all the
partitions of {1, 2, 3, . . . , n + 1}. By definition there are Bn+1 of these.
Expanding each instance of ‘n+1’ into ‘n+1, n+2’ yields all the desired
partitions of {1, 2, 3, . . . , n + 2}.

Part iv: To see this pairing in action we have listed the partitions of
{1, 2, 3, 4} that correspond to one another upon swapping the 3 and 4.

{1, 2, 3}{4} {1, 2, 4}{3}
{1, 3}{2, 4} {1, 4}{2, 3}
{1, 3}{2}{4} {1, 4}{2}{3}
{2, 3}{1}{4} {2, 4}{1}{3}

The remaining seven partitions of {1, 2, 3, 4} are unaffected by the swap;
these are listed in part ii.

Based on the previous parts, it should now be clear that the only
partitions of {1, 2, 3, . . . , n + 2} that are not affected by swapping n + 1
and n + 2 are those in which n + 1 and n + 2 are either singletons or
appear in the same subset. Hence there are Bn+2−Bn+1−Bn partitions
remaining, all of which are paired up, so we deduce that this quantity
is even. We already know that B1 = 1 is odd, B2 = 2 is even, while
B3 = 5 and B4 = 15 are both odd. We can now predict that

B5 = even, B6 = odd, B7 = odd, B8 = even, B9 = odd, B10 = odd, . . .

For instance, we have seen that B5 − B4 − B3 is even, and we know
that B4 and B3 are odd, which forces B5 to also be even. This pattern
persists, so we can predict with certainty that Bn is even exactly when
n is one less than a multiple of 3.



Part v: We claim that a partition of {1, 2, 3, . . . , n + 3} is unaffected by
the rotation (n+1) 7→ (n+2) 7→ (n+3) 7→ (n+1) in precisely two cases:
those in which {n + 1}{n + 2}{n + 3} are singletons and those where
{. . . , n + 1, n + 2, n + 3} all appear in the same subset. For suppose that
n+1 and n+2 are situated in different subsets. Then no other numbers
can appear with them, otherwise we obtain a distinct partition when we
replace n + 2 by n + 1. Similarly, n + 3 must also be a singleton. On
the other hand, suppose that n + 1 and n + 2 are situated in the same
subset. Then n + 3 must also appear in the same subset, otherwise we
obtain a distinct partition when we replace n + 3 by n + 2.

In the first case we are left with a partition of {1, 2, 3, . . . , n} once
we remove the singletons {n + 1}{n + 2}{n + 3}, so there are Bn such
partitions of this type. And in the second case we are left with a partition
of {1, 2, 3, . . . , n + 1} once we “collapse” {. . . , n + 1, n + 2, n + 3} into
just {. . . , n + 1}, so there are Bn+1 such partitions of this type. (See
the solution to part iii. for more details.) Hence there are a total of
Bn + Bn+1 partitions of {1, 2, 3, . . . , n + 3} unaffected by the rotation.

Part vi: The rotation (n + 1) 7→ (n + 2) 7→ (n + 3) 7→ (n + 1) has the
effect of grouping all partitions of {1, 2, 3, . . . , n+3} into trios, except for
those partitions unaffected by the rotation. For instance, the partitions
below turn into one another when we rotate 4 7→ 5 7→ 6 7→ 4.

{1, 3, 6}{2, 5}{4} {1, 3, 4}{2, 6}{5} {1, 3, 5}{2, 4}{6}

There are Bn+3 − Bn+1 − Bn partitions which are grouped into trios,
hence this quantity is divisible by 3. In the language of congruences,
we have Bn+3 − Bn+1 − Bn ≡ 0 mod 3, or Bn+3 ≡ Bn+1 + Bn mod 3.
Using this recurrence and reducing mod 3 as we go, the sequence of Bell
numbers looks like

1, 2, 2, 0, 1, 2, 1, 0, 0, 1, 0, 1, 1, 1, 2, 2, . . .

At this point the sequence begins to repeat, so we conclude that Bn is
a multiple of 3 exactly when n ≡ 4, 8, 9, 11 mod 13.
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