Team Play Solutions'

Part i: We compute the quotients and discover that in each case the
quantity a? + b% + 2 is exactly twice abc + 1.
12+12+22_6_2 12+22+32_14_2
1-1-241 3 7 1-2.341 7 7
12432 4+42 26 12 +4% + 5% 42
1-3-4+1 13 7 1-4-54+1 21

Since ¢ = 2 = 12 + 12, the g-values are indeed the sum of two squares.

Part ii: The previous part suggests that (1,¢,¢t+1) is an excellent triple

for any positive integer t. We can confirm this by computing

12+t2+(t+1)2_2t2+2t+2_2
MHHE+1)+1  24t4+1 7

As expected, the quotient is a positive integer, showing that (1,¢,¢+ 1)

is an excellent triple.

Part iii: It seems that triples of the form (2,¢, g(¢)) are excellent, for a

certain function ¢(¢). To find a formula for g(t) we use finite differences.

t=1 2 3 4 5
10 32 78 160 290
22 46 82 130
24 36 48
12 12

Extending the pattern back one term in each row gives values of 0, 10,

12, 12 along the diagonal beneath ¢ = 0, leading to the formula

o0 = ofg)+10(}) +12(3) +12(;)

= 10t+12-t(t2_1)+12-t(t_1é(t_2)

= 10t + 62 — 6t + 2t3 — 6¢% + 4t
= 213 + &t

We can confirm that triples of the form (2, ¢, 2t +8t) are in fact excellent
by simplifying

22 12 + (2t + 8t)7 41 + 32t* + 65¢2 + 4

, =t +4.
2t(2t3 + 8t) + 1 4t + 1682 + 1 +

Notice that the g-value is t2 + 22, which is a sum of two squares.

Part iv: By working with ¢ we can actually avoid messy algebra. We

are given that ¢ = %, thus a2 + b + ¢ = gabc+ q. Hence we have
a® + % 4 (qab —¢)* = a® +b* + & — 2qabe + ¢*a’V?

qabc + q — 2qabe + ¢*a’b?

q(qa®b* — abc 4 1).

Notice that this expression is exactly ¢ times ab(qgab — ¢) + 1. Hence
the former expression is divisible by the latter, as desired. Even more
importantly, their quotient is ¢. In other words, the g-value for the triple
(a,b,qab — c) is the same as the g-value for (a,b,c). This will play an
important role shortly.

a®+b2 4>
abz+1

Clearly plugging in = > 0 will yield a positive value, while z < —1 gives

Part v: Consider the function , for fixed positive integers a, b.
a negative value. (Or an undefined expression, in one instance.) But we
have just seen in the previous part that substituting x = gab — ¢ in this
expression yields ¢, a positive value, so we deduce that gab — c > 0.
Recall that we have an excellent triple (a, b, ¢) with quotient g. For
this value of ¢ the equation
a? +b* + 2?
abr 4+ 1

=q,

leads to a quadratic in x, which has two solutions; namely, z = ¢ and
x = qab — c. If we can show that the smaller root of this quadratic
is less than b then we will be done, since we are assuming that ¢ > b.

According to the quadratic formula the actual root is

: (qab —Va?b? — 4a? — 4b2 + 4q) .



One then checks that the following inequalities are equivalent:

1 (qab — Vq?a2b? — 4a? — 40 + 4q) < b,

qab—2b < \/q2a2b2 — 4a? — 4b% + 4q,
?a®t? — dab®q +4v* < ¢a®b? — 4a® — 4b* + 4q,
a®—q < b*(ag—2).

Now if @ = 1 the last line is clearly true, as ¢ > 2. And if @ > 1 then
the left-hand side is less than a2, while the right-hand side is at least b.
Since a < b we conclude that the final inequality is true either way, hence

so is the initial one, and we’re done.

Part vi: The groundwork has now been laid for a beautiful finish to the
problem. Suppose we have an excellent triple of numbers with ¢ > 2,
and list them in increasing order as (a,b,c). Now compute gab — c. We
have shown that this quantity is either positive or 0. If it is positive,
then we have a new excellent triple (gab — ¢, a, b) with the same ¢-value,
but the sum of the elements has decreased. We can’t repeat this process
forever, so eventually we must encounter the other possibility, namely
that gab — ¢ = 0, giving the triple (0, a,b). But note that the quotient

is still ¢, which means that

0% +a® +b?

OO S

Therefore the original quotient can be written as ¢ = a?+ b2, as claimed.
N.B. Of course we still must handle the case ¢ = 1 from part v.

Trouble only arises if a = 1 or a = 2. We leave it to the reader to check

h a’+b2+c3
abc+1

so the argument in part vi actually always works, and you're done.

that there are no values of b and ¢ for whic = 1 in these cases,

By the way, this result generalizes problem six from the 1988 IMO,
one of the most legendary (and difficult) IMO problems ever posed. So

congratulations if you made significant progress on this Team Play!
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